VTSeg: Video Transformer for Semantic
Segmentation

Vasile Lup
Computer Science Department
Technical University of Cluj-Napoca
Cluj-Napoca, Romania
lupvasi97 @gmail.com

Abstract—Semantic segmentation is a critical task for any
system that requires scene understanding, as it computes the
objects’ class at pixel level. We present VTSeg, a novel video
semantic segmentation framework that exploits spatio-temporal
information between consecutive frames to achieve a higher
segmentation quality. VTSeg leverages semi-supervised learn-
ing, eliminating the need for additional training data. The
architecture employs a unique adaptation of Transformers to
video semantic segmentation by making an analogy between
image representation spaces and natural languages. The encoder
and decoder incorporate an innovative video attention module
and generate multiscale features. Additionally, we introduce a
novel segmentation head that uses super-resolution techniques.
Compared to other video semantic segmentation approaches that
include optical flow, we achieve a 3 % mIoU improvement on the
Virtual KITTI 2 dataset, even when ground truth is used directly
for optical flow. Compared to image segmentation networks, VT-
Seg keeps the same 3% mloU distance despite using 75% fewer
labels. On the Cityscapes validation set, we obtain 76% mloU
using half the input resolution, without including any of the usual
quality enhancing techniques such as ImageNet pre-training, test
set augmentation, or sliding window inference. VTSeg framework
learns powerful representations from both labeled and unlabeled
data, making it a suitable video adapter able to boost the results
of any image-based semantic segmentation network.

Index Terms—Semantic segmentation, Video semantic segmen-
tation, Transformer, Super-Resolution, Deep Learning.

1. INTRODUCTION

Images are the main modality through which we, as humans,
perceive and interpret the world around us. The fast advance-
ment of technology has enabled the inclusion of digital cam-
eras in a plethora of devices, enabling them to noninvasively
visualize the physical world.

Semantic segmentation, the task of labeling each pixel in
an image with the corresponding class, is a foundational com-
ponent for many systems seeking scene understanding. The
applications span across areas such as autonomous driving,
robotics, and medical imaging [1], [2]. Semantic segmenta-
tion is a challenging problem due to object scale variability,
occlusions, unique object shapes, and intraclass variations.
Moreover, the high cost of pixel-level ground truth annotations
imposes severe constraints on deep architectures that require
a vast training dataset.
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As the Transformer architecture has raised the bar in natural
language processing [3], there is a new focus on adapting this
approach to image processing. Vision Transformer (ViT) [4]
is introduced by Dosovitskiy et al. for image classification and
used as a backbone for many works that employ Transformer
architecture for semantic segmentation [5]-[7].

In practice, most image-processing systems work predomi-
nantly with video sequences, characterized by spatio-temporal
relationships between frames. While we could use any image
semantic segmentation architecture and segment the video
frame-by-frame, all the invaluable information contained in
the relationship between consecutive images would be lost.

There is an ongoing effort to develop architectures for video
semantic segmentation. The redundant information between
video frames can be used for increasing inference speed [8]
or for attaining higher segmentation quality [9], [10].

We want to take a step back and address video semantic
segmentation from a different angle. From a user’s perspective,
semantic segmentation networks simply transform a real-
world image into another image that labels the real world.
In the new image, all the colors have an associated semantic
class. Essentially, RGB (Red Green Blue) image representa-
tion “language” is translated to another “language” that has
semantics associated with each color. By making an analogy
between words and images, phrases and video sequences,
video semantic segmentation becomes a problem of translation
between RGB and semantic spaces/languages.

Since the Transformer architecture has impressive results
for language translation, we want to adapt it for video se-
mantic segmentation while maintaining two key principles:
the encoder receives input in the source language, while the
decoder has as input the phrase in the destination language.
This setup stands in contrast to existing works that incorporate
Transformer architectures for video semantic segmentation.
These prior approaches often only adopt certain components
of the architecture, failing to maintain the integral encoder-
decoder pair of Transformers.

Our proposed VTSeg framework introduces a novel ap-
proach to Transformer-based video semantic segmentation. It
uses spatio-temporal information between consecutive frames
to boost segmentation quality. VTSeg harnesses the power of
semi-supervised learning, bypassing the need for extensive



labeled data, thereby reducing the overall cost and time of
manual annotation.

As mentioned above, the input for VTSeg decoder needs
to be in the destination language, which in our case is the
semantic space. To obtain this input, we use a semantic
segmentation network that works on images, also called static
semantic segmentation network. Therefore, VISeg can be
viewed as a framework that improves the segmentation of any
static network.

We base VTSeg’s encoder and decoder on the encoder used
in Segformer [7], by extending the modules to work in the
time domain. Also, we introduce a new video cross-attention
module in VTSeg’s decoder.

VTSeg is tested using two datasets: Cityscapes [11], which
contains images from real life, and Virtual KITTI 2 [12] com-
posed of densely labeled video sequences. We show that VT-
Seg obtains better segmentation quality than the architectures
it is based on, Segformer and the static segmentation network
respectively. Even when VTSeg is using 75% fewer labels in
training, it still manages to surpass the static segmentation
network. Moreover, we demonstrate that VTSeg is superior to
another video segmentation approach that uses the same static
segmentation network but also includes optical flow. In the
end, we provide a study on the effect of video attention span
and segmentation results.

II. RELATED WORK
A. Image Semantic Segmentation

Traditional techniques for semantic segmentation include
thresholding, clustering, Support Vector Machines (SVM)
or decision trees [13]. After convolutional neural networks
(CNN) were introduced in the LeNet architecture [14], they
were adapted for semantic segmentation by Long et al. [15]
who proposed a fully convolutional network (FCN).

After the introduction of FCN, a series of successive im-
provements followed. Many architectures use encoder-decoder
model, such as U-Net [2]. PSPNet [16] and DeeplabV2 [17]
take a step further and employ dilated convolutions or pyramid
pooling. Kayming et al. [18] ease gradient propagation in
deep networks with a novel block that uses residual connec-
tions. DeeplabV3+ [19] uses Atrous Spatial Pyramid Pooling,
while Wang et al. [20] achieve state-of-the-art performance by
leveraging deformable convolutions. Other architectures, such
as ERFNet [21] or SegNet [22] are focused on reducing the
inference time.

Chen et al. [5] develop a dense prediction adapter for
ViT [4]. Other adaptations of Transformer architecture for
semantic segmentation are presented in the following: Seg-
menter [23], SETR [6], Swin [24] and Twins [25]. Seg-
former [7] uses a hierarchical Transformer encoder.

B. Video Semantic Segmentation

We split architectures for video semantic segmentation into
two categories: those including optical flow and those that do
not incorporate it. The proposed network, VTSeg, does not
use optical flow.

In the optical flow inclusion category we note NetWarp [26],
which translates the internal representation across temporal
dimension. In [9] a recurrent module for video semantic
segmentation improvement is proposed, being further refined
and studied on video datasets in [10].

In [8] is presented an architecture that does not use optical
flow and updates the network’s layers using different clock
speeds. TDNet [27] is a time-distributed network for fast video
segmentation that employs an attention propagation module
(APM). TMANet [28] uses self-attention to aggregate the
relations between consecutive video frames.

C. Image-to-image translation

Image-to-image translation networks specialize in translat-
ing an image from one domain to another. They are generally
used for the operation inverse to semantic segmentation, i.e.
for transitioning from an image’s label to a realistic image.
Even if the task is different, we mention them because they
have the same principle as our approach: an image is translated
into another image.

An example is [29], which includes conditioned adversarial
networks that, in addition to the mapping between images,
also learn a cost function. The authors test the method for
semantic segmentation, but the results are inferior to regular
segmentation approaches.

III. APPROACH
A. Core idea

In image semantic segmentation we begin with images
in RGB space and generate predictions with the number of
channels equal to the number of object classes C, where
each channel contains the pixel probability of belonging to
the respective class. The final class of a pixel is given by the
channel with the highest probability for the respective position.

Starting from the RGB space with 3 channels, we end up in
another space with C' channels, which we will refer to as the
Semantic space. If we have a video sequence, starting from
a sequence of frames represented in the RGB space, we will
generate a sequence of frames in the Semantic space.

Considering the images as the equivalents of words and
the representation space as the equivalent of a language, a
video sequence implicitly becomes a sentence in a language.
Our task is to translate a sentence from the RGB “language”
into another sentence from the Semantic “language”. Thus,
we have equated the problem of semantic segmentation with
a translation problem. This is the core idea of the paper.

As the Transformer is currently the state-of-the-art transla-
tion architecture, we decided to adapt this approach to video
semantic segmentation. Of course, there will be differences
when compared to the architecture presented in [3], but the
basic ideas remain unchanged.

B. VTSeg overview

We named the proposed architecture VTSeg: Video Trans-
former for Semantic Segmentation. Figure 1 presents the
main modules. The network’s input and output are video
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Fig. 1. Video Transformer for Semantic Segmentation (VTSeg) framework. It consists of four modules: hierarchical encoder and decoder with video attention,
a segmentation head with pixel shuffle upsampling, and a static segmentation network. C' represents the number of semantic classes, while C1 .. 4 are network

hyperparameters.
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Fig. 2. VTSeg Encoder and Decoder. The main blocks are VTEncBlock
and VTDecBlock, which use self-video attention and cross-video attention
respectively. Above the arrows we have the feature maps’ sizes for a video
sequence of length k£ and with C semantic classes.

sequences of length k, with the latter containing semantic
segmentation of the frames. Both the encoder and decoder
generate hierarchical feature maps for each frame in the
input video sequence. This allows capturing of fine and more
general details of the frames. The VTSeg segmentation head
uses the pixel shuffle technique [30] to scale the semantic
segmentation to the original resolution of the frames. The
static semantic segmentation network can be replaced with
any existing semantic segmentation network. Thus, VTSeg
becomes a generic framework that can be used to improve
semantic segmentation on video sequences of any semantic
segmentation network that works just with images.

In the following, we present the role of each module and
establish the relationship with Transformer [3] architecture.
For simplicity, we did not include normalization and dropout
layers.

C. VTSeg Encoder

This module plays the role of the encoder in the Transformer
architecture, by using self-video attention layers. It receives as
input the video sequence and will generate hierarchical feature
maps for all the frames.
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Fig. 3. VTEncBlock (Video Transformer Encoder Block) for video sequences
with length & = 4. It uses efficient self-video attention.

VTSeg Encoder is presented in figure 2, having gray back-
ground. It’s composed of multiple blocks of type VTEncBlock,
each one generating feature maps at a successively lower
resolution. Cj . ..} are hyperparameters for the depth of each
VTEncBlock, set to [32, 64, 160, 256] in experiments.

This encoder is based on the Segformer’s encoder [7].
The main difference is that in the case of Segformer, the
encoder works on individual images, while the VTSeg encoder
represents an extension able to process video sequences by
applying self-attention across time.

VTEncBlock (Video Transformer Encoder Block) is pre-
sented in figure 3 considering video sequences of length
4. The part with white background is cloned N times, by
using outputs of Mix-FFN modules as the inputs for the next
clone. We set NV = 2 for the experiments. Overlapped Patch
Embedding modules are used just for the first clone. The main
components are the following:

e Overlapped Patch Embedding. Following Segformer’s ap-
proach [7], we split each frame into overlapping patches
and then extract embeddings that preserve local continuity
between neighboring patches. This is achieved by a
convolutional layer with kernel size = patch size = K,
stride S, padding P, and C; output feature maps. We use
(K =7,8 =4,P = 3) for the first VTEncBlock and
(K=3,5=2,P=1) for the rest.



o Key-value projection. In order to make the video attention
module efficient, we reduce the size of key-value pairs
with a factor of R in spatial dimension, obtaining a com-
putational complexity for attention of O(H? - W?2/R?)
instead of O(H? - W?). Details can be consulted in [7].
The 4 VTEncBlocks use values [8, 4, 2, 1].

o Serialization. For video sequences, our aim is to distribute
attention across patches from all frames simultaneously.
Serialization of all the frame patches allows us to utilize
fragments from frames originating at different time steps.
This enables us to leverage important information for
segmentation across time.

e Deserialization. This is the inverse operation of the
previous module. After applying the attention mechanism,
we reconstruct the separate feature maps for each frame
of the video sequence by taking the fragments in the order
of their serialization.

e Video Attention. This is a classic attention module (ecu-
ation 1). For queries (@), we directly use the fragments
from the embedding, while for key-value pairs (K,V),
we use their reduced projections.

QKT>
V 1
Vi)W

e Mix-FFN. This module is introduced in [7] to replace
the positional encoding module from ViT [4]. Mix-FFN
learns positional information from the input data. For
our use case, this module is a perfect fit since the
learned positional information is not just spatial, but also
temporal. The module is described by equation 2, where
MLP stands for Multi-Layer Perceptron.

Zout = MLP(GELU(Convsys(MLP(2:y)))) + Tin
()

Attention(Q), K, V') = softmax (

D. VTSeg Decoder

This is the equivalent of the decoder in Transformer archi-
tecture [3]. It receives the encoder’s output, static segmentation
of the video frames, and the original video input. With self-
and cross-video attention modules it will generate hierarchical
output feature maps for each frame.

VTSeg Decoder is presented in figure 2, using light yellow
background. It is composed of 3 types of blocks: VTEncBlock
(section III-C), VTDecBlock, and VTDec Concat. Regard-
ing the data flow, we have triplets (VT EncBlock; (from
Encoder), VT EncBlock; (from Decoder), VT DecBlock;),
i = 1...4. In the decoder, VT EncBlock; takes input from
VT DecBlock;_1 for i > 2 and from VTDec Concat for s = 1.
VT DecBlock; has two inputs, one for Encoder’s and one for
Decoder’s VT EncBlock;. For the same value of ¢, all blocks
in the triplet will have the same dimensions for the input
and output feature maps. The only exception with different
dimensions is the input to the first VTEncBlock in both the
encoder and decoder. In experiments, VTSeg Decoder uses the
same hyperparameters as VT'Seg Encoder.

VTDecBlock (Video Transformer Decoder Block) is pre-
sented in figure 4 considering video sequences of length 4. The
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Fig. 4. VTDecBlock (Video Transformer Decoder Block) for video sequences
with length k£ = 4. It uses efficient cross-video attention.

part with white background is cloned N times, by using out-
puts of Mix-FFN modules instead of VTEncBlock(Decoder)
inputs. We use N = 2 in experiments. It is very similar to
VTEncBlock, but has two key differences:

e Overlapped Patch Embedding is missing since it is in-
cluded in the VTEncBlocks used as input.

o Cross-Video Attention is used. The outputs of corre-
sponding VT EncBlock; from VTSeg Encoder are pro-
jected, serialized, and then used for K,V input of the
video attention module. The outputs of VT EncBlock;
from VTSeg Decoder are serialized and used for () input
of the video attention module.

VTDec Concat. In Transformer’s [3] training the decoder
receives as input the correctly translated text, i.e. the ground
truth. In the case of VTSeg, the training datasets do not have
the label available for each frame of the video sequence, so we
use the static semantic segmentation network as an alternative.
The static segmentation network generates an initial segmen-
tation which will be further improved by VTSeg, but it could
be far from ground truth. Therefore, to include appropriate
queries in the decoder, we add the original frames as input.
More specifically, we concatenate the 3 RGB channels of the
original frames to the C' segmentation channels.

The outputs of the static segmentation network are unscaled
values while RGB inputs are in the [0, 1] range. To eliminate
scaling discrepancies between channels we normalize the seg-
mentation with LayerNorm and apply GELU activation func-
tion before RGB channel concatenation. Layer normalization
preserves the semantics of the segmentation, as it maintains
the relative order of values across channels. GELU prevents
large negative values, and the final segmentation values will
be approximately in the same value range as the RGB input.

E. VTSeg Segmentation Head

Normally, this module would be part of the VTSeg Decoder,
but in order to reduce the decoder’s complexity we decided to
keep it separate. The semantic segmentation head takes hier-
archical feature maps generated by the decoder and generates
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Fig. 5. VTSeg Segmentation Head. Based on the VTSeg Decoder’s hierarchi-
cal output it generates the semantic segmentation at full resolution for each
of the k video frames. C' is the number of semantic classes, while Ch,cqq is
a hyperparameter.

the semantic segmentation of each of the k input frames, using
their original resolution.

VTSeg semantic segmentation head is presented in fig-
ure 5. It updates the lightweight decoder from [7] with
super-resolution techniques. The frames at each resolution
are processed independently and then concatenated. Next, the
spatial resolution is increased using upsampling based on
Pixel-Shuffle modules [30]. In the end, the output is adapted
to C' semantic classes. We use Cheqq = 256 in experiments.

F. Static Semantic Segmentation Network

In the Transformer architecture, the input to the decoder
needs to be in the target translation language. Following
the analogy from subsection III-A, the input for the VTSeg
decoder should be in the semantic space. To obtain initial
segmentation we use a separate image semantic segmentation
architecture.

We choose Efficient Residual Factorized ConvNet for Real-
time Semantic Segmentation (ERFNet) [21] as the static
segmentation network since it provides a good balance be-
tween speed and segmentation quality. ERFNet uses factor-
ized convolutions in the residual blocks that have the same
receptive field but require less computations than their non-
factorized counterpart. Also, it includes dilated convolutions
to capture multiscale context information without increasing
the computational cost.

IV. EXPERIMENTS
A. Datasets

Cityscapes [11] is a driving semantic segmentation dataset
captured in the real world. Images have a resolution of
2048 x 1024 and 19 semantic classes. The dataset contains
5000 labeled images, which are split as follows: 2975 images
for training, 500 for validation, and 1525 for testing. Ground
truth for the test set is not publicly available.

The labeled images do not form a contiguous video se-
quence, but for each labeled image the 19 preceding frames
and 10 subsequent frames are available. Therefore, Cityscapes
contains video sequences in which just one frame is labeled.

Virtual KITTI 2 [12] is a synthetic dataset for autonomous
driving that can be used for semantic segmentation, object
detection, or optical flow tasks. It aims to replicate the real-
world KITTI dataset [31] in a virtual space and consists of

5 video sequences, each having 10 variations. In this project,
we include clone, overcast, fog, 15-deg-left, sunset, and 15-
deg-right variations from the left camera. The images have
a resolution of 1242 x 375, and the semantic segmentation
ground truth contains 15 classes (including undefined class).

Virtual KITTI provides labels for each frame in the video
sequences. However, in the training set, we will only use the
label of each 4th frame to simulate the scenario of real-world
datasets with costly ground truth generation. Evaluation will
use the labels for all the frames. We use 70/20/10 data split for
the training/validation/testing sets, following a technique [10]
that prevents information leakage across splits.

The main advantage of Virtual KITTI is that it allows us
to evaluate the accuracy of the model on a video dataset with
dense labels for each frame.

B. Training

We will use video sequences of length & = 4 which
provide ground truth only for the last frame. VTSeg will use
semi-supervised learning to leverage information from both
labeled and unlabeled frames. Cityscapes frames are scaled to
a resolution of 1024 x 512, while in the Virtual KITTI case
we use a resolution of 640 x 192.

We use an AdamW optimizer with a two-phase OneCy-
cleLR [32] learning rate scheduler, weight decay le-2, and
Cross-Entropy loss. The scheduler uses a maximum learning
rate of 6e-5. Batch size is 2, i.e. 2 sequences of 4 frames
each. Data augmentation includes random flipping, scaling,
cropping, rotation, blurring, and modifications of brightness,
saturation, and hue. We do not adopt widely used tricks such
as OHEM, auxiliary losses, or class balance loss. Moreover,
we do not use pre-training on other datasets and do not train
the encoder separately.

Our training has three stages:

1) Training of the static segmentation network, ERFNet.
We skipped this stage as we used the weights made
available by authors of [21] for Cityscapes and [10] for
Virtual KITTI. Important note: since we use a different
input interpolation, ERFNet reported results might differ
slightly from the original work.

2) Training of VTSeg with frozen static segmentation net-
work for 100 epochs (one epoch = one pass through the
whole dataset).

3) End-to-end training of VTSeg and the static segmenta-
tion network for 200 epochs.

In each epoch, in order to train VTSeg using all generated
outputs, for 80% of the sequences we will derive a new video
sequence using random augmentation of the labeled frame. By
scaling and cropping we can crudely simulate camera motion
in space and generate densely labeled video sequences. The
remaining 20% sequences will discard the segmentation of the
first three frames, as no ground truth is available.

C. Evaluation

VTSeg is trained exclusively on the training set. Then, we
report the performance on the validation or test sets. The best-



TABLE 1
PER-CLASS AND MEAN 10U ON CITYSCAPES VALIDATION SET. ERFNET
AND SEGFORMER-BO ARE STATIC SEMANTIC SEGMENTATION NETWORKS,
WHILE GRU(VCN) IS AN OPTICAL FLOW VIDEO SEMANTIC
SEGMENTATION ARCHITECTURE.

Class ERFNet | Segformer-B0 | GRU(VCN) | VTSeg
road 97.61 97.82 97.73 98.17
sidewalk 80.93 82.16 81.58 84.77
building 90.63 90.84 90.86 91.88
wall 46.69 55.52 49.31 58.30
fence 55.78 51.19 55.20 59.67
pole 60.16 54.18 60.07 61.85
traffic-light 61.76 61.08 63.89 65.01
traffic-sign 71.89 70.53 72.93 75.19
vegetation 91.25 91.32 91.46 91.42
terrain 60.02 61.63 61.45 61.61
sky 93.39 93.97 93.77 94.37
person 76.36 74.82 76.91 78.29
rider 53.88 52.26 5391 58.96
car 92.85 92.63 93.13 94.26
truck 71.56 67.76 73.27 79.91
bus 77.65 76.49 79.36 85.13
train 61.54 65.02 63.77 77.09
motorcycle 46.92 55.93 46.05 55.45
bicycle 71.10 70.78 72.45 72.71
[ mloU | 71.68 ] 71.89 [ 72.48 [ 76.00 |

performing model on the validation set is run on the test set
only once.

In evaluation we use the same input resolution as in training,
but we upscale the output to the official dataset’s resolution
using bicubic interpolation before computing the results. We
report semantic segmentation performance using mean Inter-
section over Union (mloU). We do not use sliding window
inference or test set augmentation.

For a fair comparison, we included architectures that use
the same training and inference resolution as VTSeg and do
not use the performance-enhancing tricks mentioned above.
We compare VTSeg with the following:

o ERFNet [21]. This is the network used for static seg-
mentation. The provided weights for Cityscapes include
Imagenet [33] pretraining.

o Segformer-BO [7]. Segformer family includes many vari-
ants, but we use the same hyperparameters as this
model. Also, this is the only variant trained on the same
resolution as VTSeg. Segformer-BO also has Imagenet
pretraining.

e GRU(VCN) and GRU(GT) [10]. These are video se-
mantic segmentation networks that improve segmentation
results using optical flow. They include ERFNet as a
component, so we can compare VTSeg with an optical
flow framework that uses the same static segmentation
network. GRU(VCN) uses VCN [34] as the optical flow
source, while GRU(GT) directly uses Virtual KITTI
ground truth optical flow.

D. Cityscapes results

Table I presents the IoU values for VTSeg and the three
architectures mentioned above on the Cityscapes validation
set. VISeg and GRU use unlabeled frames from the video

TABLE 11
PER-CLASS AND MEAN 10U ON VIRTUAL KITTI TEST SET. GRU(GT)
USES GROUND TRUTH OPTICAL FLOW. IN TRAINING JUST 25% LABELS
ARE USED, WHILE EVALUATION IS DONE WITH ALL AVAILABLE LABELS.

Class ERFNet | GRU(VCN) | VTSeg
terrain 95.50 95.47 96.44
sky 94.19 94.22 95.44
tree 94.26 94.28 95.31
vegetation 94.56 94.57 96.32
building 94.94 95.09 96.08
road 98.34 98.34 98.77
guardrail 92.36 92.57 94.87
traffic-sign 90.02 90.94 94.16
traffic-light 82.12 83.56 87.02
pole 70.36 70.20 77.34
misc 65.14 66.54 73.19
truck 89.33 90.59 93.77
car 93.82 94.38 95.53
van 60.13 65.03 70.05

[ mloU [ 86.79 [ 87.56 [ 90.31 ]
TABLE III

PER-CLASS AND MEAN IoU ON VIRTUAL KITTI VALIDATION SET.
ERFNET(4), GRU(4), VTSEG(4) USE 25% LABELS IN TRAINING (EVERY
4TH LABEL), WHILE ERFNET(1) USES ALL THE AVAILABLE LABELS.

Class | ERENet [ ERFNet [ GRU GRU | VTSeg
“ 1 4, VCN) | 4, GD (C))
terrain 95.75 95.98 9569 | 9577 | 9633
sky 93.76 94.22 93.75 93.79 | 9474
tree 93.98 94.32 94.01 94.04 | 95.04
vegetation | 91.24 92.40 90.93 9L.13 | 93.43
building | 87.93 88.67 88.47 8840 | 9081
road 98.25 98.38 9824 | 9828 | 98.70
guardrail | 86.66 86.87 8686 | 86.86 | 8898
waffic-sign | 7171 66.69 76.17 | 7633 | 8482
waffic-light | 7533 79.88 7954 | 8034 | 8224
pole 52.17 54.59 52.79 5341 | 61.69
misc 5257 63.90 5476 | 5534 | 6274
truck 51.94 62.11 67.76 | 7000 | 7722
car 94.89 95.60 9488 | 9498 | 94.86
van 85.64 88.60 83.42 88.82 | 88.11
[ mloU | 8084 | 8302 | 8302 | 83.39 | 8641 |

sequence, while ERFNet and Segformer-BO are image seg-
mentation networks that only use labeled frames.

VTSeg outperforms the image-based segmentation networks
by more than 4% mloU. Specifically, VTSeg shows significant
improvements in classes such as train (+12%), bus (+8%),
truck (+8%), and rider (+5%). Therefore, VTSeg enhances
the accuracy for dynamic and underrepresented classes by
leveraging unlabeled frames.

VTSeg exhibits superior performance (+3.5% mloU) over
the GRU video semantic segmentation with optical flow. The
latter requires separate training on a different dataset for
the optical flow network, while VTSeg learns the temporal
relationships between frames directly through semi-supervised
learning.

E. Virtual KITTI results

Table II presents the IoU values on the test set of Vir-
tual KITTI. Compared to ERFNet, VTSeg achieves a mloU
increase of over 3.5%. At individual class level, the largest



MEAN IoU ON VALIDATION SETS WHEN THE VIDEO SEQUENCE LENGTH IS
VARIED. kinf DENOTES THE NUMBER OF FRAMES USED IN INFERENCE.

TABLE IV

VTSeg VTSeg VTSeg VTSeg
Dataset
W | Ging =1 | Ging =2 | king =3) | hiny =9
Virt. KITTI 86.32 86.29 86.40 86.41
Cityscapes 75.37 75.53 75.82 76.00

improvements are observed for van (+10%), misc (+8%), pole
(+7%), traffic-light (+5%), and traffic-sign (+4%). Once again,
we observe that the improvements occur for classes that are
underrepresented, with the dynamic class “van” showing the
largest increase.

In comparison to GRU(VCN), VTSeg achieves an improve-
ment of 2.75% mloU. At class level, the underrepresented
classes, such as pole, misc (+7%), and van (+5%) have the
biggest IoU boost.

Table III presents the IoU values on the validation set of
Virtual KITTI 2. VTSeg, GRU and ERFNet(4) use 25% of
the labels for training, while ERFNet(1) uses all the labels.

When the same number of labels is used, VTSeg achieves
a mloU increase of over 5.5% compared to the static seg-
mentation network. Compared to GRU(VCN) and GRU(GT),
the improvements are 3.4% and 3%. Even when GRU directly
uses the ground truth optical flow from Virtual KITTIL, it is
outperformed by VTSeg. The gains are again observed in the
case of underrepresented classes, such as traffic-sign and pole.

Another interesting comparison is with ERFNet(1), which
uses all the ground truth during training. VTSeg achieves a
3.4% increase in mloU, even though it is trained with 75%
fewer labels.

FE. Effects of video sequence length

We use the networks previously trained on sequences of
length 4, but we vary the length of video sequences between 1
and 4 in evaluation. Table IV presents the results. On Virtual
KITTI dataset the difference between using 4 frames (VT-
Seg(4)) and 3 frames (VTSeg(3)) is minimal, but when using
a single frame, the mloU decreases by 0.1%. Virtual KITTI
is not as complex as Cityscapes and has few dynamic classes,
therefore previous frames might not contain information that
is not present in the current frame. On Cityscapes, as expected,
the mloU values decrease proportionally with the number of
frames used. Sequences with a single frame obtain a mloU
that is over 0.6% lower than 4-frame sequences. Since the
difference between using 3 and 4 frames is 0.2% mloU, VTSeg
might benefit from using even larger video sequences.

G. Qualitative results

Figure 6 shows the semantic segmentation results on sample
2-frame video sequences. On the Virtual KITTI example (left),
ERFNet has the most errors for the white van and the overhead
traffic sign. The video segmentation network GRU(VCN)
resolves the errors for the van but still segments the traffic
sign incorrectly. In contrast, VISeg eliminates the ERFNet
errors and generates a semantic segmentation very close to the

ground truth. On Cityscapes (right) we observe that ERFNet
and Segformer-B0 ignore the pole of the parking sign (orange
rectangle), while VTSeg correctly segments it, even though
it is barely visible. The white rectangle shows how VTSeg
correctly segments both the bicycle and the cyclist, unlike the
other architectures.

V. CONCLUSION

In this paper, we present the VTSeg framework, a power-
ful Transformer architecture inspired by a novel correlation
between video semantic segmentation and natural language
translation. VTSeg innovatively exploits spatio-temporal infor-
mation between consecutive frames with no additional training
data, yielding improved segmentation quality. The framework
introduces a new video attention module in the multiscale
encoder and decoder. Moreover, we develop a segmentation
head that leverages super-resolution techniques.

We test VTSeg on Cityscapes and Virtual KITTI datasets,
where it easily surpasses image and video segmentation net-
works trained in similar conditions. VTSeg is superior even
when ground truth optical flow is used directly by other
approaches, or when it uses 75% less training labels than
image segmentation architectures.

The semi-supervised training of VTSeg successfully ex-
ploits both labeled and unlabeled data, indicating its potential
as a versatile video adapter that can significantly enhance the
results of any image-based semantic segmentation network.
Future work may explore the further adaptability of this
model to other video-based tasks, potentially expanding our
understanding and utilization of Transformer architecture in
video processing.
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